

α^{e} -Closed Set, α^{e} -Continuity and α -e-Almost Compactness For Crisp Subsets of a Fuzzy Topological Space

Anjana Bhattacharyya

Department of Mathematics, Victoria Institution (College) 78 B, A.P.C. Road, Kolkata - 700009, India. E-mail: anjanabhattacharyya@hotmail.com

Abstract

This paper is a continuation of [3]. In this paper we introduce a new type of crisp set viz., α^{e} -closed set which inherits α -e-almost compactness [3] of a fuzzy topological space. In the last section we introduce α^{e} -continuous function between two fuzzy topological spaces under which α -e-almost compactness for crisp subsets remains invariant. **AMS Subject Classifications**: 54A40, 54C99, 54D20.

Keywords: α -*e*-almost compact space, α -*e*-almost compact set, α -*e*-Urysohn space, α^{e} closed set, α -*e*-continuity, fuzzy *e*-open function.

1. Introduction

After introducing fuzzy topology given by Chang [4], different types of closed sets are introduced in fuzzy set theory. But after introducing α -shading (where $0 < \alpha < 1$) by Gantner et al. [6] in 1978, new types of closed sets which are crisp subsets of a space X where the underlying structure is fuzzy topology are introduced and studied. Here we introduce a new type of crisp subset with the help of α -shading, viz., α^e -closed set. Using the idea of α -shading in [3] α -e-almost compactness for crisp set is introduced and studied.

2. Preliminaries

Throughout the paper by (X, τ) or simply by X, we mean a fuzzy topological space (fts, for short) in the sense of Chang [4]. A crisp set A in an fts X means an ordinary subset of the set X where the underlying structure of the set X being a fuzzy topology τ . A fuzzy set [8] A is a mapping from a nonempty set X into the closed interval I = [0, 1] of the real line, i.e., $A \in I^X$. For a fuzzy set A, the fuzzy closure [4] and fuzzy interior [4] of A in X are denoted by clA